Fundamentals of Data Structures with C 35

1.7 DECISION MAKING, BRANCHING and LOOPING

1.7.1 Introduction

A set of statements that alter the flow of control of program execution fall under the
category of control-flow statements. For most of the problems the design of programs
will need control flow statements. A set of statements may have to be executed based
upon certain conditions. For instance, you may want to avoid finding factorial of a
number when a given number is negative. In this case a decision is to be taken after
checking the condition whether the number is negative or positive. If it is negative print
an error message, else simply go on to find its factorial.

C Language provides if, if-else, switch, goto, continue and break
statements to handle decision making. You will use logical and relational operators to
test for certain conditions.

1.7.2 The if Statement

The formal syntax of if statement is,

if (condition)
statement;

Table 1.9 Mathematical Functions

SL. No. | Name of the function | Meaning
1 sin(x) sine
2 cos(X) cosine of x
3 tan(x) tanﬁent of x
4 asin(x) sin”(x)
5 acos(x) cos” (x)
6 atan(x) tan” (x)
7 atan2(y,X) tan”' 0™ .
8 sinh(x) hyperbolic sine of x
9 cosh(x) hyperbolic cosine of x
10 tanh(x) hyperbolic tangent of x
11 exp(x) . e
12 log(x) In(x) natural log, x>0
13 log10(x) logjo(x), x>0
14 pow(x,y) x’
15 sqrt(x) sqrt of x
16 ceil(x) smallest integer not less than x, as a double
17 floor(x) largest integer not greater than X, as a
double
18 fabs(x) absolute value of x, [x|
19 l1dexp(x,n) x.2"
20 fmod(x,y) floating point remainder of x/y

36

Chapter1 » Introduction to C

Here, condition is an expression involving relational and logical operators. The
statement may be a single legal C statement or a compound statement enclosed
within braces (see below)

if (condition)

{
statement-1;
statement-2;
statement-n;
}

Execution Sequence

When the program control comes to the i f statement, the condition is evaluated first. If
the condition is evaluated as true (any positive value is taken as true), the control goes
to statement(s) following the if statement. Supposing, if the condition is false (zero),
then the statements inside the curly braces are skipped.

Example program 1.14
To find the bigger out of two numbers.

#include <stdio.h>
#include <stdlib.h>
void main{()

{
int numl; /* first data */
int num2; /* second data */
printf ("Enter the first number:");
scanf ("$d", &numl) ;
printf ("Enter the second number:"):;
scanf ("$d", &num2) ;
if (numl > num2)
{
printf("The bigger one is = %d\n",numl);
exit(0);
}
printf("the bigger one is = %d\n",num2);
}
Sample Run-1

Enter the first number:7
Enter the second number:5
The bigger one is = 7

Fundamentals of Data Structures with C ' 37

Sample Run-2

Enter the first number:5
Enter the second number:28
The bigger one is = 28

In the first case, ie., numl = 7 and num2 = 5, numl is greater than num2 and
therefore, i statement expression evaluates to true. The bigger one (num1) is printed
and the program exits, because of exit (0) function. The exit () function takes the
control back to the operating system unconditionally.

In the second case, since the first number is not greater than the second, no
statement under if is executed. The control comes to the last statement i.e.,
printf () function and prints the second number as bigger.

Program 1.15
if statement — more closer look

#include <stdio.h>
void main()

{
int a;
printf ("Enter an integer:");
scanf("%d",&a);
if (a=5)
printf("entered value is = %d/n",a); /* line-1 */
}

Sample Run-1

Enter an in integer:5
Entered value is = 5
Sample Run-2

Enter an integer:7

Entered value is 5

Well something is wrong here! Just look at the second output. It has given a wrong
result why? The mistake is in statement if (a = 5). The condition a = 5 is not
really a conditional statement, instead it is an assignment statement. The compiler does
not give any error. It actually evaluates to frue (or 1). In other words, whatever be the
value of a, it always executes printf () in line-1
You must write: if (a == 5)

printf ("---- ") ;

40 Chapter1 » Introduction to C

case constant2: statement (s);
break;

default: statement (s) ;
break ; /* optional */
}

next-statement; /* line-1 */

Execution sequence

The switch expression is evaluated first,

Each case is labeled by one or more integer-valued constants. If a case matches
the expression value, execution starts at the case until it encounters break. After
executing break, the control comes to line-1 (i.e. next-statement).

The case labeled the default is executed if none of the other cases are satisfied.
The default keyword is optional.

The break under the default case is also optional.

In case there is no break for a particular case structure; the execution proceeds
with the next case. In other words, the control does not come to line-1.

There must be at least one blank space between the keyword case and the
constant as per the syntax rule.

Program 1.17
Simple function calculator

#include <stdio.h>
void main/()

{

float opndi; /* first operand */
float opnd2; /* second operand */
char op; /* operator */
float result = 0; /* final answer */

printf(" enter an expression :");
scanf ("%£f%c%f", &opndl, &opnd2) ;
/* Evaluate */

switch (op)

{
case '+': result = opndl+ opnd2;
break;
cace '-': result = opndl - opnd2;
break;

case '*': result = opndl * opnd2;

Fundamentals of Data Structures with Cc 41

break;
case '/': result= opndl / opnd2;
break;
default: printf("Bad operator \n");
break; /* exit(0); */
}
/* print the answer */
printf("%.1f $c %.1f = %.1f/n“,opndl,op,opndz,result);

}

Sample Run

Enter an expression:3.2+7
3.2 + 7.0 = 10.2

1.7.6 The ? : Operator (Conditional Operator)

The conditional operator is an alternative way to use if-else construct.
if (conditional expression)
expressionl;
else
expression2;
Now with the C language's short-hand notation (conditional operator ? :), you can
accomplish the above task as shown below:
conditional expression ? expressionl : expression2;
The conditional operator is a ternary operator, which means that is has three operands.
First operand is the control that precedes the question mark ? Second is
expressionl that precedes colon (:), and the third is expresion2 that follows
the colon(:).

Program 1.18
Finding Max

#include <stdio.h>
void main()
{
int max;
int numl;
int num2;
printf ("Enter two numbers: ") ;
scanf ("$d%d", &numl, &num2) ;

max = (numl>num2) ? numl : num2; /* line-1%*/

4 Chapter1 » Introduction to C
Sample Run

4

3 when n = 0 the value of n is printed and

2 the loop exits.

1

0

1.7.9 The do-while Loop

To achieve looping, another possibility is to use do-while and it is same as while
statement except that the testing is done at the bottom.

(1) do
statement
while (condition);
(2) do
{

statement (s) ;
} while(condition);

Execution Sequence

The statement(s) are executed at least once and then the conditional expression is
evaluated. If it turns out to be true, the loop repeats, else if the condition is Jalse the
control goes to the statement following the do-while. The semicolon (;) after the
while statement is a must.

Normally, do-while is used when certain statements are executed at least once
as it is shown below:

do

{
printf ("Enter an integer number:");
scanf ("%d4", &i);

} while (i > 0);

The number is read first and if it is positive the loop is executed again-reads another
number. In case if the number is negative, the condition is false and reading operation is
broken, this piece of code does the Job of reading only positive values.

1.7.10 The for Statement

The while and do-while are called as indefinite loop constructs (because the
number of iterations are unknown), where as for statement is a definite loop.

for (initialize; test; update)
statement;

Fundamentals of Data Structures withC 45

for (initialize; test; update)
{

statement (s) ; /* body of the loop */
}

Here, initialize, test, update are optional, but semicolon (;) is a must.

Execution Sequence

The initialize part is executed first and only once. The expression under test is
evaluated. If it is true then the body of the loop is executed. The expression given in the
update is executed and again it is tested. If it is true the iteration continues, otherwise
the loop terminates.

Program 1.21
To find b" raise base to n-th power, 1 >= 0

#include <stdio.h>
void main()
{
int base; /* base */
int i, n; /* power */
int result; /* final result */
printf ("Enter base and n:");
scanf ("%dsd", &base, &n) ;
result = 1;
if (n >= 0)

for (i = 1; i <= nj i++)
result = result * base;
printf ("%d power %d is = %d\n", base,n,result);

}
Sample Run

Enter base and n: 2 5
2 power 5 is = 32
It is possible to define multiple variables inside a for loop using comma (,) operator.
For example,
void main()
{

int cu, cd; /* countup and countdown */

for (cu = 0, cd = 10; cu < 10, cu++, cd--)

printf ("sd\t%d\n", cu,cd);

48 Chapter1 » Introduction to C

Program 1.23 .
To print the numbers from 1 to 91 in the following fashion, using nested for loop.
1
2 3
4 5 6
7 8 9 10

11 12 13 14 15

16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 353 53 54 55

56 57 58 59 60 61 62 63 64 65 66

67 68 69 70 71 72 73 74 75 76 77 78

79 80 81 82 83 84 85 86 87 88 89 90 91

#include <stdio.h>
void main ()
{
int i,75; /* loop indices */
int count = 1; /* to keep track of the sequence */
/* outer loop controls the rows */
for (i = 1; count <= 91; i++)
{
/* inner loop prints the numbers */
for (J = 1; j <= i; j++)
{
printf("$4d", count);
count++;
}
/* print a blank line after each row */
printf("\n");
}
}

Program 1.24
Binary to decimal conversion

#include <stdio.h>

void main()

{
int n; /* binary input */
int a = 0; /* to hold the decimal vlaue *x/
int t = 1; /* to keep track of powers of two */

Fundamentals of Data Structures withC

int flag = 0; /* flag to catch wrong input
long num; /* temporary variable
printf ("Enter the Binary Number : ");

scanf ("%1d", &n);
while (n > 0 && !'flag)

{
num = n % 10;
if (num == 0 || num == 1)
{
a = a+ num * t;
n = n/10;
t *= 2;
}
else flag++;
}

if (!'flag) printf ("The Decimal Number = sd\n",a);

else printf ("### Wrong Input\n");

49

*/
*/

1.8 ARRAYS

1.8.1 Introduction

So far we have seen data elements which are scalars. This means that any variable you
declare can hold a single value only. However, there are many occasions where in a
large amount of data is to be manipulated. In such case cases, it may require thousands
of such declarations. For instance, to handle the marks of 80 students in a class- it is

cumbersome to declare 80 variables.

Instead, if we can declare a single variable and store the marks for 80 students, we
would get the most flexible way of programming. C language provides a facility to
solve this problem in the form of an array declaration. An array is one that allows you

to define large amount of storage for related data elements with a single name.
float stdmrk(80];

Now, you can handle the marks of the first student with indexing mechanism i.e.,
stdmrk[0] . The following section will give you more details for handling arrays.

1.8.2 One-Dimensional Arrays

Just like any other variable(s), you must declare an array before it could be used.

syntax for the array declaration is:

<data_type> array_name [array_sizel;

The

50 Chapter1 » Introduction to C

For example,
int a[10]); /* declares an integer type array */
float x[5]; /* declares a float array */
int temp[TEN*4]; /* TEN - symbolic constant */
char alpha[26]; /* character array */

Syntactic Rule -1

The example (1) declares an integer array, where all the elements must be of integer
type. You can't mix up the data types across the defined array type.

Syntactic Rule - 2

To specify the array size, you cannot use a floating-point number, because compiler
cannot allocate fractional memory.

int a[7.5]; /* illegal */ '

Whenever the compiler encounters an array declaration, it sets aside a block of memory
as specified by the array_size.

Program 1.25
Reading and printing

#include <stdio.h>
void main()

{
int a[10]; /* integer array of 10 elements */
int i; _
printf ("Enter 10 integer elements: \n");
for (i = 0; i < 10; i++) .

scanf ("$d",&a[i]); /* read element by element */

/* print each element in a line */
for (i = 0; i < 10; i++)
{
: printf("$d\n", al[i]);
}

}

Sample Run

Enter 10 integer elements:
31582764910

3

1

5,

